Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(9): e1010974, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37773959

RESUMO

Adenylosuccinate lyase deficiency is an ultrarare congenital metabolic disorder associated with muscle weakness and neurobehavioral dysfunction. Adenylosuccinate lyase is required for de novo purine biosynthesis, acting twice in the pathway at non-sequential steps. Genetic models can contribute to our understanding of the etiology of disease phenotypes and pave the way for development of therapeutic treatments. Here, we establish the first model to specifically study neurobehavioral aspects of adenylosuccinate lyase deficiency. We show that reduction of adsl-1 function in C. elegans is associated with a novel learning phenotype in a gustatory plasticity assay. The animals maintain capacity for gustatory plasticity, evidenced by a change in their behavior in response to cue pairing. However, their behavioral output is distinct from that of control animals. We link substrate accumulation that occurs upon adsl-1 deficiency to an unexpected perturbation in tyrosine metabolism and show that a lack of tyramine mediates the behavioral changes through action on the metabotropic TYRA-2 tyramine receptor. Our studies reveal a potential for wider metabolic perturbations, beyond biosynthesis of purines, to impact behavior under conditions of adenylosuccinate lyase deficiency.


Assuntos
Adenilossuccinato Liase , Adenilossuccinato Liase/deficiência , Transtorno Autístico , Proteínas de Caenorhabditis elegans , Erros Inatos do Metabolismo da Purina-Pirimidina , Receptores de Amina Biogênica , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Proteínas de Caenorhabditis elegans/genética
2.
Mol Genet Metab ; 140(3): 107686, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37607437

RESUMO

Inborn errors of purine metabolism are rare syndromes with an array of complex phenotypes in humans. One such disorder, adenylosuccinate lyase deficiency (ASLD), is caused by a decrease in the activity of the bi-functional purine biosynthetic enzyme adenylosuccinate lyase (ADSL). Mutations in human ADSL cause epilepsy, muscle ataxia, and autistic-like symptoms. Although the genetic basis of ASLD is known, the molecular mechanisms driving phenotypic outcome are not. Here, we characterize neuromuscular and reproductive phenotypes associated with a deficiency of adsl-1 in Caenorhabditis elegans. We demonstrate that adsl-1 function contributes to regulation of spontaneous locomotion, that adsl-1 functions acutely for proper mobility, and that aspects of adsl-1-related dysfunction are reversible. Using pharmacological supplementation, we correlate phenotypes with distinct metabolic perturbations. The neuromuscular defect correlates with accumulation of a purine biosynthetic intermediate whereas reproductive deficiencies can be ameliorated by purine supplementation, indicating differing molecular mechanisms behind the phenotypes. Because purine metabolism is highly conserved in metazoans, we suggest that similar separable metabolic perturbations result in the varied symptoms in the human disorder and that a dual-approach therapeutic strategy may be beneficial.


Assuntos
Adenilossuccinato Liase , Transtorno Autístico , Erros Inatos do Metabolismo da Purina-Pirimidina , Animais , Humanos , Transtorno Autístico/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Fenótipo , Purinas
3.
PLoS Pathog ; 18(7): e1010699, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35797340

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1009350.].

4.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143646

RESUMO

Necrosis was once described as a chaotic unregulated response to cellular insult. We now know that necrosis is controlled by multiple pathways in response to many different cellular conditions. In our pnc-1 NAD+ salvage deficient Caenorhabditis elegans model excess nicotinamide induces excitotoxic death in uterine-vulval uv1 cells and OLQ mechanosensory neurons. We sought to characterize necrosis in our pnc-1 model in the context of well-characterized necrosis, apoptosis, and autophagy pathways in C. elegans. We confirmed that calpain and aspartic proteases were required for uv1 necrosis, but changes in intracellular calcium levels and autophagy were not, suggesting that uv1 necrosis occurs by a pathway that diverges from mec-4d-induced touch cell necrosis downstream of effector aspartic proteases. OLQ necrosis does not require changes in intracellular calcium, the function of calpain or aspartic proteases, or autophagy. Instead, OLQ survival requires the function of calreticulin and calnexin, pro-apoptotic ced-4 (Apaf1), and genes involved in both autophagy and axon guidance. In addition, the partially OLQ-dependent gentle nose touch response decreased significantly in pnc-1 animals on poor quality food, further suggesting that uv1 and OLQ necrosis differ downstream of their common trigger. Together these results show that, although phenotypically very similar, uv1, OLQ, and touch cell necrosis are very different at the molecular level.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , NAD/metabolismo , Necrose/metabolismo , Neurônios/metabolismo
5.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34723146

RESUMO

Nicotinamide recycling is critical to the development and function of Caenorhabditis elegans. Excess nicotinamide in a pnc-1 nicotinamidase mutant causes the necrosis of uv1 and OLQ cells and a highly penetrant egg laying defect. An EGF receptor (let-23) gain-of-function mutation suppresses the Egl phenotype in pnc-1 animals. However, gain-of-function mutations in either of the known downstream mediators, let-60/ Ras or itr-1, are not sufficient. Phosphatidylcholine synthesis is neither required nor sufficient, in contrast to its role in the let-23gf rescue of uv1 necrosis. The mechanism behind the let-23gf suppression of the pnc-1 Egl phenotype is unknown.

6.
PLoS Pathog ; 17(4): e1009350, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33878133

RESUMO

Intestinal epithelial cells are subject to attack by a diverse array of microbes, including intracellular as well as extracellular pathogens. While defense in epithelial cells can be triggered by pattern recognition receptor-mediated detection of microbe-associated molecular patterns, there is much to be learned about how they sense infection via perturbations of host physiology, which often occur during infection. A recently described host defense response in the nematode C. elegans called the Intracellular Pathogen Response (IPR) can be triggered by infection with diverse natural intracellular pathogens, as well as by perturbations to protein homeostasis. From a forward genetic screen, we identified the C. elegans ortholog of purine nucleoside phosphorylase pnp-1 as a negative regulator of IPR gene expression, as well as a negative regulator of genes induced by extracellular pathogens. Accordingly, pnp-1 mutants have resistance to both intracellular and extracellular pathogens. Metabolomics analysis indicates that C. elegans pnp-1 likely has enzymatic activity similar to its human ortholog, serving to convert purine nucleosides into free bases. Classic genetic studies have shown how mutations in human purine nucleoside phosphorylase cause immunodeficiency due to T-cell dysfunction. Here we show that C. elegans pnp-1 acts in intestinal epithelial cells to regulate defense. Altogether, these results indicate that perturbations in purine metabolism are likely monitored as a cue to promote defense against epithelial infection in the nematode C. elegans.


Assuntos
Células Epiteliais/metabolismo , Nucleosídeos de Purina/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Infecções Bacterianas/prevenção & controle , Caenorhabditis elegans/metabolismo , Contagem de Células/métodos , Purina-Núcleosídeo Fosforilase/deficiência
8.
Artigo em Inglês | MEDLINE | ID: mdl-32545527

RESUMO

Skin adherence (SA) of soil affects exposure from soil contaminants through dermal routes via loading on the skin and through ingestion routes through hand to mouth activities. The objectives of this study were to evaluate the relationships between adherence versus child-specific and environmental factors. Two sets of soil-to-skin adherence were evaluated. The first was based on loading on hands following hand presses (Hand SA). The second was based on body rinses following one hour of play activities on the beach (Body SA). Results for 98-119 children conducted at four beach sites show that mean Hand SA was 35.7 mg/cm2 (std. dev. 41.8 mg/cm2), while Body SA based on full coverage was 352.3 mg/cm2 (std. dev. 250.4 mg/cm2). Statistically significant differences in Body SA were observed between male (419.2 mg/cm2) and female (300.4 mg/cm2) children (p < 0.05). No significant difference by sex was found for Hand SA. Other statistically different observations were that Hand SA (p < 0.05), but not Body SA, differed across the four beaches (p < 0.05). For Hand SA, this difference was associated soil size variability across the beaches. Hand and Body SA values measured during this study are recommended for use in risk assessments that evaluate beach exposures to oil spill chemicals for young children.


Assuntos
Mãos , Poluição por Petróleo , Poluentes do Solo , Criança , Pré-Escolar , Exposição Ambiental , Feminino , Humanos , Lactente , Masculino , Medição de Risco , Solo , Poluentes do Solo/análise
9.
Adv Exp Med Biol ; 1236: 225-244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32304075

RESUMO

Genetic model systems allow researchers to probe and decipher aspects of human disease, and animal models of disease are frequently specifically engineered and have been identified serendipitously as well. Animal models are useful for probing the etiology and pathophysiology of disease and are critical for effective discovery and development of novel therapeutics for rare diseases. Here we review the impact of animal model organism research in three examples of congenital metabolic disorders to highlight distinct advantages of model system research. First, we discuss phenylketonuria research where a wide variety of research fields and models came together to make impressive progress and where a nearly ideal mouse model has been central to therapeutic advancements. Second, we review advancements in Lesch-Nyhan syndrome research to illustrate the role of models that do not perfectly recapitulate human disease as well as the need for multiple models of the same disease to fully investigate human disease aspects. Finally, we highlight research on the GM2 gangliosidoses Tay-Sachs and Sandhoff disease to illustrate the important role of both engineered traditional laboratory animal models and serendipitously identified atypical models in congenital metabolic disorder research. We close with perspectives for the future for animal model research in congenital metabolic disorders.


Assuntos
Modelos Animais de Doenças , Erros Inatos do Metabolismo , Animais , Gangliosidoses GM2 , Humanos , Doenças Raras/congênito , Doença de Sandhoff , Doença de Tay-Sachs
10.
Technol Cult ; 61(1): 239-259, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32249221

Assuntos
Altitude
11.
Sci Rep ; 9(1): 19709, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873103

RESUMO

Nicotinamide (NAM) alters behavior in C. elegans and Drosophila, serving as an agonist of TRPV channels affecting sensory neurons and mimicking the mode of action of insecticides used to control phloem-feeding insects. The impact of NAM on green peach aphid (Myzus persicae) behaviors was assessed in artificial diet assays and foliar applications to Arabidopsis plants. Aphids feeding on artificial diets supplemented with NAM impaired stylet movement causing feeding interruptions and ultimately starvation and death. Aphid feeding behaviors were negatively impacted on NAM sprayed plants at concentrations as low as 2.5 mM leading to increased mortality. In choice assays with NAM sprayed leaves aphids showed clear preference for untreated control leaves. NAM is an intermediate in the NAD salvage pathway that should accumulate in nicotinamidase (nic) mutants. LC-MS analysis showed NAM accumulates 60-fold in nic-1-1 Arabidopsis mutants as compared with Col-0. Aphid reproductive potential was significantly decreased on nic-1-1 mutant plants, resulting in a smaller colony size and arrested population development. The results support the hypothesis that dietary NAM causes behavioral changes in aphids, including altered feeding, reduced reproduction, and increased mortality. NAM is thought to bind to TRPV channels causing overstimulation of sensory neurons in the aphid feeding apparatus.


Assuntos
Afídeos/fisiologia , Fertilidade/efeitos dos fármacos , Niacinamida/farmacologia , Animais , Afídeos/efeitos dos fármacos , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Comportamento de Escolha/efeitos dos fármacos , Dieta , Comportamento Alimentar/efeitos dos fármacos , Interações Hospedeiro-Parasita/efeitos dos fármacos , Mutação/genética , Análise de Sobrevida
12.
Technol Cult ; 58(3): 846-855, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890462

RESUMO

This article has two interconnected goals. It is, first of all, a review of the film The Land Beneath Our Feet, an exemplary documentary that combines the history of technology, science and technology studies, and environmental history in its exploration of the social, cultural, and natural consequences of the rubber industry's expansion in Liberia. The essay's larger purpose, however, is to explore the powerful role documentary film-making practices have to play in the development of new approaches in the history of technology. Here, an interview with historian and film co-director Gregg Mitman provides the framework for an expansive conversation about both the "documentary impulse" that he explores in his film and related written works, and also the growing role of audiovisual practice in scholarly work.

13.
J Biol Chem ; 292(27): 11147-11153, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28559281

RESUMO

NAD+ biosynthesis is an attractive and promising therapeutic target for influencing health span and obesity-related phenotypes as well as tumor growth. Full and effective use of this target for therapeutic benefit requires a complete understanding of NAD+ biosynthetic pathways. Here, we report a previously unrecognized role for a conserved phosphoribosyltransferase in NAD+ biosynthesis. Because a required quinolinic acid phosphoribosyltransferase (QPRTase) is not encoded in its genome, Caenorhabditis elegans are reported to lack a de novo NAD+ biosynthetic pathway. However, all the genes of the kynurenine pathway required for quinolinic acid (QA) production from tryptophan are present. Thus, we investigated the presence of de novo NAD+ biosynthesis in this organism. By combining isotope-tracing and genetic experiments, we have demonstrated the presence of an intact de novo biosynthesis pathway for NAD+ from tryptophan via QA, highlighting the functional conservation of this important biosynthetic activity. Supplementation with kynurenine pathway intermediates also boosted NAD+ levels and partially reversed NAD+-dependent phenotypes caused by mutation of pnc-1, which encodes a nicotinamidase required for NAD+ salvage biosynthesis, demonstrating contribution of de novo synthesis to NAD+ homeostasis. By investigating candidate phosphoribosyltransferase genes in the genome, we determined that the conserved uridine monophosphate phosphoribosyltransferase (UMPS), which acts in pyrimidine biosynthesis, is required for NAD+ biosynthesis in place of the missing QPRTase. We suggest that similar underground metabolic activity of UMPS may function in other organisms. This mechanism for NAD+ biosynthesis creates novel possibilities for manipulating NAD+ biosynthetic pathways, which is key for the future of therapeutics.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Complexos Multienzimáticos , NAD , Orotato Fosforribosiltransferase , Orotidina-5'-Fosfato Descarboxilase , Ácido Quinolínico/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , NAD/biossíntese , NAD/genética , Orotato Fosforribosiltransferase/genética , Orotato Fosforribosiltransferase/metabolismo , Orotidina-5'-Fosfato Descarboxilase/genética , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Triptofano/genética , Triptofano/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-27663471

RESUMO

Zinc is necessary for successful gametogenesis in mammals; however the role of zinc in the gonad function of non-mammalian species has not been investigated. The genetic tractability, short generation time, and hermaphroditic reproduction of the nematode C. elegans offer distinct advantages for the study of impaired gametogenesis as a result of zinc deficiency. However the phenotypic reproductive effects arising from zinc restriction have not been established in this model. We therefore examined the effect of zinc deficiency on C. elegans reproduction by exposing worms to the zinc chelator N,N,N',N'-tetrakis (2-pyridylmethyl)ethane-1,2-diamine (TPEN). Treatment began at the early larval stage and continued until reproductive senescence. TPEN treatment reduced the total number of progeny produced by C. elegans hermaphrodites compared with control subjects, with the largest difference in output observed 48h after larval stage 4. At this time-point, zinc deficient worms displayed fewer embryos in the uterus and disorganized oocyte development when observed under DIC microscopy. DAPI staining revealed impaired oogenesis and chromosome dynamics with an expanded region of pachytene stage oocytes extending into the proximal arm of the gonad. This phenotype was not seen in control or zinc-rescue subjects. This study demonstrates that reproduction in C. elegans is sensitive to environmental perturbations in zinc, indicating that this is a good model for future studies in zinc-mediated subfertility. Aberrant oocyte development and disruption of the pachytene-diplotene transition indicate that oogenesis in particular is affected by zinc deficiency in this model.


Assuntos
Caenorhabditis elegans/metabolismo , Organismos Hermafroditas , Meiose , Oócitos/metabolismo , Oogênese , Zinco/deficiência , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Quelantes/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Etilaminas/farmacologia , Feminino , Fertilidade , Organismos Hermafroditas/efeitos dos fármacos , Meiose/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/patologia , Oogênese/efeitos dos fármacos , Piridinas/farmacologia , Fatores de Tempo
15.
Nat Commun ; 7: 13135, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731314

RESUMO

TRPV ion channels are directly activated by sensory stimuli and participate in thermo-, mechano- and chemo-sensation. They are also hypothesized to respond to endogenous agonists that would modulate sensory responses. Here, we show that the nicotinamide (NAM) form of vitamin B3 is an agonist of a Caenorhabditis elegans TRPV channel. Using heterologous expression in Xenopus oocytes, we demonstrate that NAM is a soluble agonist for a channel consisting of the well-studied OSM-9 TRPV subunit and relatively uncharacterized OCR-4 TRPV subunit as well as the orthologous Drosophila Nan-Iav TRPV channel, and we examine stoichiometry of subunit assembly. Finally, we show that behaviours mediated by these C. elegans and Drosophila channels are responsive to NAM, suggesting conservation of activity of this soluble endogenous metabolite on TRPV activity. Our results in combination with the role of NAM in NAD+ metabolism suggest an intriguing link between metabolic regulation and TRPV channel activity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas do Tecido Nervoso/genética , Niacinamida/farmacologia , Subunidades Proteicas/genética , Canais de Cátion TRPV/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/agonistas , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expressão Gênica , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/metabolismo , Niacinamida/metabolismo , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Subunidades Proteicas/agonistas , Subunidades Proteicas/metabolismo , Sensação/efeitos dos fármacos , Sensação/fisiologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismo , Xenopus laevis
16.
G3 (Bethesda) ; 6(11): 3533-3540, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605519

RESUMO

Identification of pro-cell survival signaling pathways has implications for cancer, cardiovascular, and neurodegenerative disease. We show that the Caenorhabditis elegans epidermal growth factor receptor LET-23 (LET-23 EGFR) has a prosurvival function in counteracting excitotoxicity, and we identify novel molecular players required for this prosurvival signaling. uv1 sensory cells in the C. elegans uterus undergo excitotoxic death in response to activation of the OSM-9/OCR-4 TRPV channel by the endogenous agonist nicotinamide. Activation of LET-23 EGFR can effectively prevent this excitotoxic death. We investigate the roles of signaling pathways known to act downstream of LET-23 EGFR in C. elegans and find that the LET-60 Ras/MAPK pathway, but not the IP3 receptor pathway, is required for efficient LET-23 EGFR activity in its prosurvival function. However, activation of LET-60 Ras/MAPK pathway does not appear to be sufficient to fully mimic LET-23 EGFR activity. We screen for genes that are required for EGFR prosurvival function and uncover a role for phosphatidylcholine biosynthetic enzymes in EGFR prosurvival function. Finally, we show that exogenous application of phosphatidylcholine is sufficient to prevent some deaths in this excitotoxicity model. Our work implicates regulation of lipid synthesis downstream of EGFR in cell survival and death decisions.

17.
Small ; 12(37): 5120-5125, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27515787

RESUMO

A polydimethylsiloxane microchannel featuring sidewall sharp-edge structures and bare channels, and a piezoelement transducer is attached to a thin glass slide. When an external acoustic field is applied to the microchannel, the oscillation of the sharp-edge structures and the thin glass slide generate acoustic streaming flows which in turn rotate single cells and C. elegans in-plane and out-of-plane.


Assuntos
Acústica/instrumentação , Caenorhabditis elegans/citologia , Rotação , Animais , Células HeLa , Humanos , Neurônios/citologia
18.
Nat Commun ; 7: 11085, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27004764

RESUMO

The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.


Assuntos
Micromanipulação/métodos , Rotação , Som , Acústica/instrumentação , Animais , Caenorhabditis elegans , Desenho de Equipamento , Células HeLa , Humanos , Técnicas Analíticas Microfluídicas , Micromanipulação/instrumentação
20.
J Biol Chem ; 290(43): 26163-79, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26350462

RESUMO

Temporal developmental progression is highly coordinated in Caenorhabditis elegans. However, loss of nicotinamidase PNC-1 activity slows reproductive development, uncoupling it from its typical progression relative to the soma. Using LC/MS we demonstrate that pnc-1 mutants do not salvage the nicotinamide released by NAD(+) consumers to resynthesize NAD(+), resulting in a reduction in global NAD(+) bioavailability. We manipulate NAD(+) levels to demonstrate that a minor deficit in NAD(+) availability is incompatible with a normal pace of gonad development. The NAD(+) deficit compromises NAD(+) consumer activity, but we surprisingly found no functional link between consumer activity and reproductive development. As a result we turned to a comparative metabolomics approach to identify the cause of the developmental phenotype. We reveal widespread metabolic perturbations, and using complementary pharmacological and genetic approaches, we demonstrate that a glycolytic block accounts for the slow pace of reproductive development. Interestingly, mitochondria are protected from both the deficiency in NAD(+) biosynthesis and the effects of reduced glycolytic output. We suggest that compensatory metabolic processes that maintain mitochondrial activity in the absence of efficient glycolysis are incompatible with the requirements for reproductive development, which requires high levels of cell division. In addition to demonstrating metabolic requirements for reproductive development, this work also has implications for understanding the mechanisms behind therapeutic interventions that target NAD(+) salvage biosynthesis for the purposes of inhibiting tumor growth.


Assuntos
Caenorhabditis elegans/fisiologia , Metabolômica , NAD/biossíntese , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Glicólise , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...